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One-dimensional turbulence is a stochastic simulation method representing the time
evolution of the velocity profile along a notional line of sight through a turbulent
flow. In this paper, the velocity is treated as a three-component vector, in contrast
to previous formulations involving a single velocity component. This generalization
allows the incorporation of pressure-scrambling effects and provides a framework for
further extensions of the model. Computed results based on two alternative physical
pictures of pressure scrambling are compared to direct numerical simulations of two
time-developing planar free shear flows: a mixing layer and a wake. Scrambling
based on equipartition of turbulent kinetic energy on an eddy-by-eddy basis yields
less accurate results than a scheme that maximizes the intercomponent energy transfer
during each eddy, subject to invariance constraints. The latter formulation captures
many features of free shear flow structure, energetics, and fluctuation properties,
including the spatial variation of the probability density function of a passive advected
scalar. These results demonstrate the efficacy of the proposed representation of vector
velocity evolution on a one-dimensional domain.

1. Introduction
The correlated fluctuations of velocity and pressure in incompressible turbulence

are among the most challenging aspects of turbulence from a modelling perspective,
owing to the non-local nature of pressure-field evolution. Nevertheless, empirical
approaches based on concepts such as return to isotropy provide useful representations
of pressure–velocity correlations in closure-based models (Pope 2000). These models
empirically characterize the rate of return to isotropy on an ensemble averaged basis.

In contrast, the modelling approach adopted here involves an unsteady simulation
of flow evolution that is resolved in space and time. The model incorporates an
explicit representation of the kinematics and dynamics of velocity-field evolution
during individual eddy turnovers.

This approach provides a more direct connection between model assumptions
and the phenomenology of pressure-fluctuation effects than is possible for models
based on time or ensemble averaging. Reynolds-stress models and their probability-
density-function (PDF) counterparts require strongly coupled flow interactions to be
represented as multiple subprocesses whose physical significance is unclear in some
instances. Models of this type that address details of flow structure are generally
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limited to a particular class of flows, as illustrated by recent applications to free shear
flows (Kim & Chung 1995; Van Slooten, Jayesh & Pope 1998) and near-wall flows
(Dreeben & Pope 1998), respectively.

The present focus is simulation of free shear flows. In the flows considered here,
the dominant pressure–velocity interactions are inviscid at high Reynolds number
(Re), simplifying the interpretation of results. Nevertheless, viscous effects are fully
represented within the model, so the formulation introduced here is directly applicable
to boundary layers and other flows (Kerstein et al. 2001).

The model introduced here is a generalization of ‘one-dimensional turbulence’
(ODT). ODT is an unsteady simulation of a velocity profile on a one-dimensional
domain representing a notional line of sight through a turbulent flow. Because vortical
overturns cannot occur in continuum flow on a one-dimensional domain, a stochastic
process, involving instantaneous mappings that represent individual overturns, is
introduced. Conventional continuum representations of molecular processes such as
viscous transport are implemented on the one-dimensional domain.

The model was originally (Kerstein 1999a) formulated to evolve the profile of a
single velocity component because it lacked a representation of interaction among
velocity components. Recently (Wunsch & Kerstein 2001), a method was introduced
for modifying component energy while obeying all conservation and consistency
requirements. The method was applied to a buoyant stratified flow for which conver-
sion between kinetic and potential energy was the key concern, so implications for
modelling energy transfer among velocity components were not addressed. Here, the
model is generalized by introducing a vector velocity field whose three components
exchange energy in a manner that emulates pressure–velocity interactions.

The description of the new formulation (§ 2) is followed by its application to time-
developing free shear flows for which detailed flow statistics, and some passive scalar
statistics, are available from direct numerical simulations (DNS) by Rogers & Moser
(1994) and Moser, Rogers & Ewing (1998). These are useful initial comparison cases
because the self-similar regimes of these flows exhibit intricacies of flow energetics
that provide stringent tests of a turbulence model, yet are insensitive to viscous-scale
processes. Thus, the focus of model comparisons to DNS is the model representation
of inviscid energy transfer, which is the novel feature of the present formulation.
Application of the vector velocity formulation to turbulent boundary layers, in which
viscous processes play a key role, is reported elsewhere (Kerstein et al. 2001).

2. Stochastic simulation method
2.1. Overview

The advantages of a turbulence model formulated as a one-dimensional unsteady
stochastic simulation are twofold. First, a one-dimensional formulation enables af-
fordable simulation of high-Re turbulence over the full range of dynamically relevant
length scales, allowing physically sound representation of interactions between tur-
bulent advection and microphysical processes such as viscous dissipation. Second,
this approach captures diverse flow behaviours within a concise modelling framework
based on broadly applicable empirical principles, thereby demonstrating a degree of
commonality among turbulent flow phenomena that might not otherwise be readily
apparent.

Since the present model formulation is a substantial generalization of earlier
formulations, a detailed description is provided here. This version of ODT describes
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the evolution of a three-component vector velocity field vi(y, t) defined on a one-
dimensional domain (parameterized by the spatial coordinate y, corresponding to the
direction i = 2). Additional scalar fields θ(y, t) may also be defined in the model.

The fields defined on the one-dimensional domain evolve by two mechanisms:
molecular evolution and a stochastic process representing advection. The stochastic
process consists of a sequence of events, each of which involves an instantaneous
transformation of the velocity and scalar fields. During the time interval between
each event and its successor, molecular evolution occurs, governed by the equations

(∂t − ν∂2
y)vi(y, t) = 0, (1)

(∂t − κ∂2
y)θ(y, t) = 0, (2)

where ν is the kinematic viscosity and κ is the scalar diffusivity (from which the
Schmidt number, Sc = ν/κ, is formed).

The events representing advection may be interpreted as the model analogue of
individual turbulent eddies. This interpretation is not essential to the analysis; it
merely provides an intuitive basis for presenting the model. In what follows, these
events are termed ‘eddy events’ or simply eddies. This terminology reflects the fact
that each event is characterized by three properties, namely a length scale, a time
scale, and a measure of kinetic energy, and a key physical input to the model
is a postulated relationship among these quantities that is analogous to the usual
dimensional relationship applied to individual turbulent eddies.

The advection submodel is specified by defining the mathematical operations per-
formed during an eddy event and by formulating the rules that govern the random
selection of events. Roughly speaking, the eddy definition is the model representation
of flow kinematics (i.e. fluid advection and flow-field response to forcings), while rules
governing the stochastic selection of events reflect the dynamics that drive the eddy
motions.

Because advection is implemented as an event sequence rather than a continuous
process, the velocity field does not directly prescribe the fluid motions. Motions and
velocities are nevertheless closely linked through the dynamics embodied in the event
selection rules (§ 2.3).

In the current formulation, an eddy event consists of two mathematical operations.
One is a measure-preserving map representing the fluid motions associated with a
notional turbulent eddy. The other is a modification of the velocity profiles in order
to implement energy transfers prescribed by the dynamical rules. These operations
are represented symbolically as

vi(y)→ vi(f(y)) + ciK(y), θ(y)→ θ(f(y)). (3)

According to this prescription, fluid at location f(y) is moved to location y by
the mapping operation, thus defining the map in terms of its inverse f(y), which
is convenient for present purposes. This mapping, which is the model analogue
of the advection operator v · ∇ of the Navier–Stokes equations, is applied to all
fluid properties. The additive term ciK(y), affecting only the velocity components,
represents velocity changes due to pressure gradients or body forces. This additional
term was introduced by Wunsch & Kerstein (2001) in order to capture aspects of
buoyant stratified flow energetics in a formulation involving one velocity component.
Here it is used in a vector velocity formulation to capture pressure-induced energy
redistribution among velocity components.

The functional form chosen for f(y) is the simplest of a class of mappings that
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satisfy the physical requirements of measure preservation (the non-local analogue
of vanishing velocity divergence), continuity (no introduction of discontinuities by
the mapping operation), and scale locality (at most order-unity changes in property
gradients). The first two requirements are fundamental properties. The requirement
of scale locality is based on the well-established empirical principle that length-scale
reduction in a turbulent cascade occurs by a sequence of small steps (corresponding
to notional turbulent eddies), causing downscale energy transfer to be effectively local
in wavenumber. Kerstein (1999a) discusses possible definitions of f(y) with reference
to these and other desired attributes, and adopts the ‘triplet map,’

f(y) ≡ y0 +


3(y − y0) if y0 6 y 6 y0 + 1

3
l

2l − 3(y − y0) if y0 + 1
3
l 6 y 6 y0 + 2

3
l

3(y − y0)− 2l if y0 + 2
3
l 6 y 6 y0 + l

y − y0 otherwise,

(4)

that was employed in an earlier (Kerstein 1991) one-dimensional mixing model. This
mapping takes a line segment [y0, y0 + l], shrinks it to a third of its original length, and
then places three copies on the original domain. The middle copy is reversed, which
maintains the continuity of advected fields and introduces the rotational folding effect
of turbulent eddy motion. Property fields outside the size-l segment are unaffected.
The parameters y0 and l determining the segment location and size are specified for
a given event by random sampling, governed by rules explained in § 2.3.

In (3), K is a kernel function that is conveniently defined as K(y) = y − f(y). It
is non-zero only within the eddy interval, and it integrates to zero so that energy
redistribution does not change the total (y-integrated) momentum of individual
velocity components (here assuming constant density). The amplitudes ci in (3) are
determined for each eddy individually according to a pressure-scrambling model that
is described next.

2.2. Pressure-scrambling model

A mechanism for pressure scrambling is introduced that changes the kinetic energy
of individual velocity components, defined by

Ei ≡ 1
2
ρ0

∫
v2
i (y) dy, (5)

while keeping the total kinetic energy E ≡ ∑
i Ei constant. (In this section, the

argument t of vi and functions of vi is suppressed. For convenience, the density ρ0,
assumed constant, is defined as mass per unit length. Applications considered here are
unaffected by the definition or value of the density.) This is accomplished by adding
the function K(y) to each component with a prescribed amplitude ci, as indicated in
(3). Determination of these amplitudes requires additional modeling.

To formulate this part of the model, we consider the change in the kinetic energy
of component i due to the implementation of an eddy event. According to (3), the
energy change is

∆Ei = 1
2
ρ0

∫
[(vi(f(y)) + ciK(y))2 − vi(y)2]dy = ρ0l

2ci(vi,K + 2
27
lci), (6)

where we have used the identity
∫
K2(y) dy = 4

27
l3 and the definition

vi,K ≡ 1

l2

∫
vi(f(y))K(y) dy =

4

9l2

∫ y0+l

y0

vi(y)[l − 2(y − y0)] dy. (7)
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The rightmost expression in (7) follows from the definitions of f(y) and K(y). The
requirement

∑
i ∆Ei = 0 implies only one constraint on the three amplitudes ci.

Motivated by the phenomenological interpretation of pressure scrambling as a
tendency to restore isotropy, the amplitudes are further constrained by requiring
invariance under exchange of indices. With these constraints, the kinetic energy
changes imposed on the velocity components must be of the form

∆Ei = α
∑
j

TijQj, (8)

where Qj (j = 1, 2, or 3) is a quantity with units of energy that depends on vj(y) and
scalars, α is a free parameter, and the transfer matrix T is defined by

T ≡ 1

2

 −2 1 1
1 −2 1
1 1 −2

 . (9)

This matrix is constructed to obey energy conservation (
∑

i ∆Ei = 0) and to be
invariant under permutation of indices. These requirements uniquely define T except
for an arbitrary multiplicative constant, which is absorbed in the parameter α. Using
(6), the amplitudes ci are determined by the choice of the quantities Qi and the value
of α.

Specification of Qi is motivated by the following observation. While addition of
ciK(y) to vi makes it possible to add an arbitrarily large quantity of energy, the
amount that can be removed is bounded. The bound is determined by maximizing
−∆Ei with respect to ci in (6). It is advantageous to set Qi equal to this bound
because α is then conveniently interpreted as the energy extracted from each velocity
component, expressed as fraction of the maximum possible energy extracted, for
redistribution to the other components. The physically realizable range of α is then
[0,1], regardless of the instantaneous structure of the vi fields. For this choice of Qi,
particular values of α have natural physical interpretations, as noted in § 3.1. On this
basis, we obtain

Qi ≡ 27
8
ρ0lv

2
i,K . (10)

Wunsch & Kerstein (2001) note that Qi defined in this manner is also a useful measure
of eddy kinetic energy for other purposes; in § 2.3 it is used in the formulation of
eddy selection rules. We will refer to Qi as defined in (10) as the ‘available kinetic
energy’ of velocity component i in the interval [y0, y0 + l].

Because the available kinetic energy as defined here is based on a model con-
struct, it does not have a fundamental basis in the same sense as the thermody-
namic concept of available work (Callen 1960) or the available potential energy
concept applied to density-stratified flow (Lorenz 1955). However, the procedure
formulated here for implementing energy changes is broadly consistent with the
empirical principle of scale locality. The function K(y) introduced in (3) concisely
embodies this principle by assuring that (i) the scale of velocity fluctuations in-
duced by energy transfers is comparable to the eddy size, and (ii) fluctuations
that determine the energy available for transfer, based on (6), are of compara-
ble size. Analogous considerations apply to the role of K(y) in the eddy selection
process, § 2.3.

With Qi given by (10), the exchange amplitudes ci are obtained by solving (6)–(9)
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to obtain

ci =
27

4l

−vi,K + sgn(vi,K)

√
v2
i,K + α

∑
j

Tijv
2
j,K

 . (11)

The solution is guaranteed to be real provided that 0 6 α 6 1, reflecting the physical
constraints on the range of α.

In (11), the sign ambiguity in the solution to the quadratic equation for ci is re-
solved by requiring that ci → 0 as α→ 0. Velocity components that are initially zero
everywhere are seeded with small initial random perturbations to prevent sign am-
biguities in these components. The perturbations are symmetric about zero, assuring
that these components have zero mean unless a boundary condition or body forcing
breaks the symmetry. In general, the model formulation as outlined is consistent with
the ensemble-average symmetry and invariance properties of the specified initial and
boundary conditions and forcings, though instantaneous flow states do not satisfy
these properties due to random fluctuations.

2.3. Eddy selection

The final ingredient required in the model is the determination of the time sequence
of eddy events, individually parameterized by position y0 and size l, that are im-
plemented. In ODT, eddy events are implemented instantaneously, but should occur
with frequencies comparable to the turnover frequencies of corresponding turbulent
eddies. Events are therefore sampled from an event rate distribution that reflects the
physics governing eddy turnovers. A key feature of this distribution is that it based
on the instantaneous state of the flow, and thus evolves in time as the flow evolves.

At each instant in time, the event rate distribution is defined by first associating a
time scale τ(y0, l) with every possible eddy event. This time scale is analogous to the
eddy turnover time as usually defined, but with a crucial difference. It is based on
the instantaneous velocity profiles vi(y, t) rather than some presumed ‘characteristic’
velocity fluctuation amplitude across a given size-l eddy, so no a priori scaling ansatz
is required. Time scales of individual eddy events can and do deviate significantly from
the values that would be inferred from conventional estimates of the turnover times
of ‘typical’ size-l eddies. The simulated flow evolution reflecting these eddy events and
their interactions (through the ‘imprint’ of individual events on the velocity profiles
and the consequent memory of past events) is found to reproduce the salient features
and scalings of turbulent eddy cascades (Kerstein 1999a; Wunsch & Kerstein 2001),
which are thus outcomes of the model rather than inputs to the model. This attribute
of the model is illustrated in the present context by results presented in § 3.1.

For a quantititive definition of τ, a measure of the turbulent kinetic energy associ-
ated with each possible mapping interval is employed. The most general dimensionally
consistent form for the time scales τ(y0, l) is

ρ0l
3

τ2
∼∑

j

BjQj, (12)

where Bj are arbitrary dimensionless constants, and the quantities Qj are some
measure of energy in the velocity components. Based on the considerations discussed
in § 2.2, we again choose Qj to be the available kinetic energy of component j,
given by (10). We choose to base the determination of time scales on the available
kinetic energy of the velocity component parallel to the ODT domain (v2 in our
notation), because eddy events represent motion in this direction. This choice breaks



One-dimensional turbulence 91

the symmetry under index exchange only in determining the sequence of events, while
maintaining it during the implementation of each individual event. In particular,
the quantities Bj are chosen so that the right-hand side of (12) corresponds to the
available kinetic energy in component v2 upon completion of eddy implementation.
Based on (8)–(10), this yields(

l

τ

)2

∼ v2
2,K + α

∑
j

T2jv
2
j,K . (13)

There is one additional consideration in determining τ. Due to the damping effects
of viscosity, any eddy with a time scale much longer than the corresponding viscous
time scale τν ∼ l2/ν for that eddy size should be prohibited. This suggests including a
‘viscous penalty’ in the relation determining the eddy turnover time, which is therefore
recast as (

l

τ

)2

∼ v2
2,K + α

∑
j

T2jv
2
j,K − Z ν

2

l2
. (14)

The coefficient of proportionality Z in the viscous penalty is an order-unity parameter
of the model. For the application considered here, viscosity is irrelevant in the high-
Re limit of interest and the inclusion of this cutoff is primarily for convenience in
numerical simulation.

The modelling choices leading to (14) are intended to achieve the broadest possible
applicability of the model, including extensions to flow phenomena not considered
here. For example, consider a flow with a spatially varying v1 or v3 profile but v2

identically zero. The eddy energy as characterized by the right-hand side of (14) can
be positive for this case only if the scrambling term (the second term) is large enough
to overcome the viscous damping. In this case, the ratio α/Z controls the onset of
higher-dimensional motion. This raises the possibility (not yet investigated in detail)
that the present formulation may encompass the transition to turbulence as well as
fully developed turbulence.

Another possible generalization is the incorporation of buoyancy, with the ODT
domain vertically oriented. ODT formulations involving one velocity component
have included buoyancy (Kerstein 1999a, b; Wunsch & Kerstein 2001). The present
formulation offers a more detailed representation of buoyancy effects, including both
the exchange between gravitational potential energy and vertical kinetic energy and
the coupling of this process to the other velocity components by means of the
scrambling mechanism.

As in previous versions of ODT, the time scales τ for all possible eddies are
translated into an event rate distribution λ, defined as

λ(y0, l; t) ≡ C

l2τ(y0, l; t)
=
Cν

l4

√√√√(v2,K l

ν

)2

+ α
∑
j

T2j

(
vj,Kl

ν

)2

− Z, (15)

where the turnover time based on (14) has been inserted. If the right-hand side of
(14) is negative, the eddy is deemed to be suppressed by viscous damping and λ
is taken to be zero for that case. In the square-root term of (15), the quantities
preceding Z involve groups that have the form of a Reynolds number. Z can be
viewed in this context as a parameter controlling the critical Reynolds number for
eddy turnover. The relationship between this Reynolds-number threshold and the
threshold for transition to turbulence is discussed by Kraichnan (1962).
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The foregoing construction of the event rate distribution involves three free pa-
rameters: C , α, and Z . The overall rate coefficient C determines the strength of the
turbulence in the model; hence it determines the Reynolds number Re or equivalent
measures of turbulence intensity. The transfer coefficient α determines the degree of
kinetic energy exchange among components. For α = 0 (no exchange), this formu-
lation reduces to a specialization of the buoyant stratified flow model of Wunsch &
Kerstein (2001) to constant density flows. The viscous cutoff parameter Z determines
the smallest eddy size for given local strain conditions. The three parameters in the
rate distribution, together with the initial and boundary conditions of the flow being
simulated and the physical properties of the fluid (density, viscosity, etc.), constitute
the complete set of inputs required by the model.

The sequence of eddies implemented during a simulated realization is sampled from
the rate distribution λ. During a time increment dt, the probability of occurrence of
an eddy whose location and size are within the ranges [y0, y0 + dy0] and [l, l + dl]
respectively is λ(y0, l; t) dy0 dl dt.

Each event, as well as the viscous evolution (1) between events, changes the
velocity profiles vi and therefore modifies the rate distribution λ. This interaction
between the rate distribution and simulated flow evolution is largely responsible for
key features of the model such as emulation of the inertial-range turbulent cascade
(Kerstein 1999a; Wunsch & Kerstein 2001). From a computational viewpoint, it causes
explicit construction of, and sampling from, the rate distribution to be unaffordable
owing to the need to reconstruct this distribution repeatedly. Instead, an indirect but
mathematically equivalent procedure is employed. An alternative rate distribution
that remains unchanged during the simulation is specified arbitrarily, though the
procedure is most efficient if it approximates the true distribution. Events are sampled
from the fixed distribution at fixed time increments. For an event that is sampled
at time t, defined by chosen values of y0 and l, the true value of λ is computed.
(The complete procedure for this computation is described in § 2.4.) The true value
is then compared to the corresponding value specified by the fixed distribution.
The comparison determines an acceptance probability for the event. In the limit
of vanishing time increments between samplings, this two-step procedure – random
sampling followed by a random trial determining acceptance or rejection – results
in an event sequence governed by the true rate distribution, without reconstructing
the entire distribution for each sampling operation. Details are provided elsewhere
(Kerstein 1999a).

2.4. Large-eddy anomaly

For time-developing flows, the statistical sampling procedure used in ODT introduces
an artifact associated with the occasional selection of an event much larger than
the momentum thickness of the flow. These events are rare because the dimensional
scalings underlying the method are consistent with scale locality (i.e. events of given
size are driven most effectively by forcings of comparable scale). However, the rare
large events permitted by the statistical sampling procedure contribute disproportion-
ately to lateral transport, which scales as the square of the event size. Thus, they can
dominate the lateral growth of the free shear flows considered here, as well as other
flows.

Several ways of mitigating this artifact have been employed previously (Kerstein
1999a; Kerstein & Dreeben 2000). Here, a large-eddy suppression mechanism is
introduced that is physically motivated, parameter free, and broadly applicable.

To suppress rare large events, the rate λ for a given event is evaluated two different
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ways, and the smaller of the two results is used in the sampling procedure outlined in
§ 2.3. One evaluation is by the method already described in § 2.3, based on (15). The
other evaluation involves replacement of each velocity profile vi(y, t) by a profile that
is linear in y, and evaluation of (15) based on these linear profiles. The slope of each
profile is taken to be the median value of |dvi/dy| within the eddy range [y0, y0 + l].

The key attribute of this procedure is that it assigns a zero rate to any event for
which each velocity profile is flat (zero slope) in more than half of the eddy range.
Thus, an event encompassing a y interval that is more than twice the width of the
active zone of an entraining shear flow is strictly excluded. The median of absolute
slope is used in order to avoid a balance of positive and negative values that would
result in a zero median for events whose exclusion is not intended. In addition to
preventing unphysically large eddies, this procedure reduces the likelihood of events
whose available energy is dominated by contributions from a small subinterval of the
eddy range. Thus, the procedure further enforces scale locality, which is the conceptual
basis of ODT.

The median procedure could be used as a replacement, rather than an augmentation,
of the procedure of § 2.3. However, the model is internally most consistent if the true
profiles, which must be used in eddy implementation (mapping and energy exchange),
are also used in eddy selection. The median procedure as implemented can only
reduce the likelihood of a given event, consistent with the objective of excluding
certain events with minimal modification of other aspects of the model.

2.5. Perspective

In view of the unfamiliar features of the present modelling approach, it is compared
briefly to other modelling concepts that have been applied to turbulence. Specifically,
the transilient model (Stull 1988), the binary-tree mode-coupling approach, stochastic
geometrical constructions, and the wavelet concept are considered.

Stull formulates a one-dimensional turbulence model representing the evolution of
a vertical fluid profile in atmospheric turbulence. To capture effects of large-scale
motion, he introduces a ‘transilient matrix’ that prescribes a property transfer rate
from any cell of the profile to any other. Matrix coefficients are based on a ‘mixing
potential’ involving production and dissipation terms analogous to those of (14) and
a buoyancy term analogous to the ODT formulation of Wunsch & Kerstein (2001).
Though there is a resemblance between the dynamical inputs to the two models,
kinematically they are quite different. ODT is an unsteady simulation in which fluctu-
ations are inherent and microphysical mechanisms are explicitly represented. Though
the transilient model incorporates advective transfers on all length scales (analo-
gous to the incorporation of eddies of all sizes in ODT), it is an ensemble-averaged
formulation that does not literally resolve fine-grained structure and evolution.

One could extract rates of eddy-induced cell-to-cell property transfer from ODT
simulations and thereby construct the corresponding transilient matrices. This would
yield a version of the transilient model that is, in effect, a mean-field representation
of ODT advective processes.

The ODT modelling approach is largely motivated by the desire to incorporate
multiscale turbulent cascades into a formulation that can address diverse initial-
boundary-value problems of interest. The transilient model is an example of an
approach that accomplishes the latter but does not model turbulent cascades. If one
wishes to do the reverse, namely model cascades but not necessarily couple them to
realistic forcing mechanisms, then a lower-dimensional model need not be formulated
in physical space. Useful models for this purpose have been formulated that evolve



94 A. R. Kerstein, W. T. Ashurst, S. Wunsch and V. Nilsen

with respect to a scalar wavenumber k (Fourier-space representation) and time. A
cascade model more closely analogous to ODT is the binary-tree mode-coupling
approach that evolves in a (1+1)-dimensional ultrametric space, thereby providing a
representation of spatial correlations in homogeneous turbulence (Aurell, Dormy &
Frick 1997; Benzi et al. 1997). Cascade models allow mode interactions to proceed over
time. The ODT analogue is the eddy event, which must be instantaneous in order to
obtain a physical-space formulation with desired properties. Other turbulence models,
such as the randomly forced Burgers equation (Chekhlov & Yakhot 1995) and a one-
dimensional Biot-Savart formulation (Constantin, Lax & Majda 1985; De Gregorio
1990), have been formulated in one physical-space dimension, but they do not satisfy
the conservation properties necessary for meaningful comparisons to inhomogeneous
flows.

Another turbulence modelling approach that has been applied in one dimension is
the stochastic construction of one-dimensional functions whose statistical properties
resemble turbulent flow properties. Two methods that have been used involve repeated
application of a generating function with random selection of function parameters.
One method generates the synthetic signal by additive superposition (Juneja et al.
1994), analogous in some respects to the role of the kernel in ODT. The other
(Vicsek & Barabási 1991) involves a recursive refinement process that is analogous
to the multiplicative increase of property gradients by the triplet map. Both ODT
and the stochastic constructions involve the specification of generators (functions in
the constructions; both a kernel function and a mapping in ODT) whose repeated
application involves random parameter selection. The key difference is that ODT is a
dynamical time-evolving model in which each selection step depends on past history.

The kernel K(y) that is used both to measure available energy and to implement
energy transfers may be viewed as a wavelet construct. Like a wavelet, the kernel is
effectively a local filter that selects fluctuations whose length scales are comparable
to the eddy size l. It thus enforces the correspondence between the eddy size and the
scale of the dynamics governing its occurrence. This may be regarded as a matter of
definition rather than a physical principle, because the turbulent eddy is a concept
rather than a physical observable; it is analogous to a normal mode of a linear
system, but has no precise definition owing to the strong nonlinearity of the Navier–
Stokes equations. If a turbulent eddy is heuristically defined as motion in response
to local forcing at a given length scale, then the use of a wavelet-type construct to
characterize the forcing can be viewed as a consistency requirement rather than a
physical modelling assumption.

3. Application to free shear flows
3.1. Numerical implementation and features of the simulations

For each of the flow configurations considered here, computed results are based on
5000 simulated realizations. To facilitate initial transient relaxation, it is convenient
to choose the initial velocity profiles to be continuous functions of y. Accordingly, the
initial v1 profile for the mixing layer is a linear ramp between two semi-infinite flat
regions whose velocity difference is denoted ∆U. The initial v1 profile for the wake
is a symmetric tent. The initial v2 and v3 profiles for both flows are nominally zero,
but are seeded with small random perturbations as explained in § 2.2. For both flows,
the computational domain is taken to be large enough so that it is effectively infinite,
i.e. the turbulent region does not extend close enough to the boundaries during the
simulations to be affected by their presence.
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Owing to the coordinate invariance of the pressure-scrambling mechanism (§ 2.2),
the statistical evolution of velocity components subject to the same initial and bound-
ary conditions (in this instance, the v2- and v3-components) is indistinguishable in
the present formulation. A more general formulation that breaks this symmetry
while maintaining required invariance properties has been formulated and tested.
This formulation involves three eddy types, each of which allows energy exchange
between two of the three velocity components. Because eddy selection is based on
the v2-component available kinetic energy (§ 2.3), this generalization breaks the (v2, v3)
symmetry. In particular, it captures the two-dimensional (v1, v2) character of the
dominant shear instabilities. However, this formulation is not adopted here because
its performance is not commensurate with the additional complexity and parameter
tuning that it entails. The formulation used here is intended to capture the principal
manifestation of anisotropy, resulting from the imposition of the initial shear solely on
the v1-component, but not the secondary manifestations that break (v2, v3) symmetry.

The present focus is the self-similar evolution of flow statistics seen in high-Re
DNS. The ODT simulations exhibit analogous high-Re self-similarity.

The wake results reported here correspond to Reynolds number, defined as Re =
(1/ν)

∫ ∞
−∞〈v1〉 dy, equal to 2000, the same value as in the DNS comparison case. In

the time-developing wake, Re remains constant during the simulations. Additional
runs for other Re values indicate that this value of Re is high enough so that flow
statistics for the self-similar flow regime are insensitive to Re.

For the mixing layer, the initial value of Re based on ∆U and the momentum
thickness δm =

∫ ∞
−∞[ 1

4
− (〈v1〉/∆U)2] dy is 427, compared to an initial DNS value

of 800. (The definition of δm is based on nominal v1 values of ±∆U/2 in the flat
regions.) For this flow, Re increases with time, so the onset of self-similar evolution
is inherently a confirmation of Re insensitivity.

The lack of Re sensitivity for both flows implies that features of the model
associated with viscous transport are negligible for the Re values considered. This
implies insensitivity not only to the kinematic viscosity ν, but also to the model
parameter Z that controls the strength of the viscous penalty in the eddy rate
distribution, (15). This insensitivity has been verified by running representative cases
for different values of Z . The results presented here correspond to Z = 0.02.

As noted in § 2.2, the allowed range of the model parameter α controlling the degree
of energy exchange among velocity components is [0,1], where α = 0 corresponds to
no exchange and hence no representation of pressure scrambling. Simulations have
been performed for α = 1

3
, 2

3
, and 1. The case α = 1 maximizes the intercomponent

exchange, an interesting limit to consider. Based on (8)–(10), α = 2
3

corresponds
to equalization of the component available energies. This is consistent with the
intuitive notion that an eddy turnover erases memory of fluid orientation in any fixed
reference frame, implying no dependence of the post-eddy distribution of available
energy among velocity components on the distribution prior to the turnover.

It is found that results for α = 1 are in best agreement with DNS results, so most
of the results presented here correspond to this ‘maximum exchange’ (M) case. To
illustrate the sensitivity to α, some results are also presented for the ‘equipartition’ (E)
case, α = 2

3
. Implications with regard to the physical interpretation of the model are

noted in § 4. We remark here that any α within the allowed range results in an overall
tendency to equalize the component available energies, so the model is generally
consistent with the ‘return-to-isotropy’ concept that is the basis of pressure–strain
modelling in closure-based models (Pope 2000).
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The model parameter C is an overall rescaling of the event rate distribution. In
flow regimes that are insensitive to the strength of viscous processes, eddy events
entirely control flow development, so rescaling of the eddy event rate is equivalent
to rescaling of the time coordinate, and hence rescaling of the growth rate. For the
self-similar regimes of both flows considered here, it has been verified that variation
of C changes only the growth rate, with no effect on other properties other than
proportionate rescaling of quantities dependent on the growth rate.

These self-similar regimes exhibit the same growth laws as the corresponding DNS
results. The numerical coefficients in the DNS growth laws, (1/∆U)dδm/dt = 0.014
for the mixing layer and (1/U0)db/dt = 0.12 for the wake (where b is the full width at
half-maximum of the mean velocity profile, growing as t1/2, and U0 is the centreline
mean velocity, decaying as t−1/2), are matched for C = 3.78 and 5.55 for the mixing
layer and wake, respectively. These C values were used for all α values considered
because the growth rates were found to be insensitive to α.

For each of the flow statistics considered, the onset of self-similarity was demon-
strated by verifying the collapse of normalized quantities computed within time bands.
Once the self-similar time regime was identified, all the normalized data within the
self-similar regime were pooled. This procedure was applied to all the results that are
presented here.

Figure 1 illustrates some features of the simulation. For the mixing layer and the
wake, respectively, the eddy events during a simulated realization are represented by
vertical line segments. The horizontal location of each segment corresponds to the
time of occurrence of the event, and the vertical extent of the segment corresponds
to the eddy interval.

For both flows, it is evident that the width of the turbulent zone grows primarily
by the occurrence of an occasional event that causes a large increase, with some
additional contribution by the more numerous small events. This process is consistent
with the dominant role of large engulfing motions and the secondary role of persistent
small-scale nibbling in turbulent entraining flows. The relative contributions of these
mechanisms in the simulations are sensitive to the method that is used to prevent a
large-eddy anomaly (§ 2.4). It would be of interest to quantify these contributions and
compare them to measurements, but this is not attempted here.

Also evident in both flows is bunching of events, particularly after the occurrence
of a large event. This reflects feedback processes that induce the model analogue
of the turbulent cascade (§ 2.3). Based on the defined measure of available energy,
wrinkling of velocity component profiles by a triplet map increases the likelihood
of subsequent smaller events in its vicinity. This mechanism accounts for both the
cascade of velocity fluctuations to smaller scales in the simulation and the bunching
of eddies, analogous to turbulence intermittency.

Figure 1 also highlights the connection between large-scale forcing and small-scale
flow structure. Owing to the velocity difference maintained across the mixing layer,
the flow Reynolds number increases in proportion to the width of the turbulent zone.
The Kolmogorov inertial-range scalings therefore imply that the size of the smallest
eddies scales as the 1

4
-power of the width, and that their turnover time scales as

the 1
2
-power of the width. The wake, however, is a constant-Re flow, so the small

eddies scale in the same manner as the large eddies. Accordingly, their size scales as
the turbulent zone width and their turnover time scales as the square of the width.
The eddy sequences shown in figure 1 appear to be broadly consistent with these
scalings.
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Figure 1. Eddy locations (vertical line segments) versus time in one simulated realization (case M)

of (a) the planar mixing layer, (b) the planar wake. Spatial units are 20ν/Û and time units are

20ν/Û2, where Û denotes ∆U for the mixing layer and the initial value of U0 for the wake.

3.2. Comparison to direct numerical simulations

Lateral profiles of mean velocity, Reynolds shear stress, velocity fluctuations, and
velocity fluctuation budgets obtained from the self-similar regime of the ODT sim-
ulations are compared to DNS results. All flow properties are normalized as in the
DNS studies. Lengths are scaled by δm and b, and velocities are scaled by ∆U and
U0, for the mixing layer and wake, respectively. Probability density functions (PDFs)
and related properties of a passive advected scalar are also examined.

Figures 2 and 3 show that maximum exchange (M) yields reasonable agreement
with the DNS mean axial velocity and Reynolds shear stress profiles of both flows.
Equipartition (E) results closely resemble those for case M. The shapes of these
profiles are largely dictated by the mean spreading rate. ODT spreading rates have
been matched to the DNS spreading rates for these flows by parameter adjustment
(§ 3.1), so these comparisons are not stringent tests of model performance.

As noted in § 2.1, advection on the one-dimensional domain is implemented in ODT
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Figure 2. Lateral profile of mean streamwise velocity, scaled by ∆U for the mixing layer and by
U0 for the wake: −−−, ODT case M; ——, DNS. (a) Mixing layer. (b) Wake.
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Figure 3. Lateral profile of Reynolds shear stress 〈v′1v′2〉, scaled by (∆U)2 for the mixing layer and
by U2

0 for the wake: −−−, ODT case M; ——, DNS. (a) Mixing layer. (b) Wake.

as a sequence of instantaneous events rather than as continuous motion governed
by the velocity profiles. Therefore the flux interpretation of quantities such as the
Reynolds stress component 〈v′1v′2〉 is not applicable if these quantities are computed
in ODT directly from the velocity components. In Navier–Stokes flow, 〈v′1v′2〉 can
be interpreted as the advection of v1 fluctuations by v2 fluctuations, but in ODT,
the v2 velocity does not directly prescribe the advection of v1 (or of any other fluid
property). Therefore the Reynolds stresses and other advective fluxes (arising, e.g.,
in velocity fluctuation budgets) are evaluated in ODT by monitoring eddy-induced
fluxes during simulated realizations. This assures that conservation laws and balance
equations are satisfied exactly. The formal development of this approach is presented
in the Appendix.

Lateral profiles of ODT velocity-component variances 〈v′21 〉, 〈v′22 〉, and 〈v′23 〉, and
their sum q2, are compared to DNS results in figure 4. As explained in § 3.1, ODT
simulations of the flows considered here do not distinguish between the v2 and v3

velocity components, so all statistical properties of these two components that are
shown in the figures are identical. The DNS results indicate that the differences
between the statistics of these components are smaller than the differences between
either of them and the v1-component statistics. This is consistent with the physical
origins of the anisotropy, discussed in § 3.1.

It would be expected that the difference between cases E and M would affect the
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Figure 4. Lateral profiles: --------, q2; ——, 〈v′21 〉; — . —, 〈v′22 〉; −−−, 〈v′23 〉, scaled by (∆U)2 for the
mixing layer and by U2

0 for the wake. (The ODT 〈v′23 〉 profiles are identical to the ODT 〈v′22 〉 profiles.)
ODT and DNS results are plotted right and left of centreline, respectively. (a) Mixing layer, case E.
(b) Mixing layer, case M. (c) Wake, case E. (d) Wake, case M.

distribution of total variance q2 between the v1-component and the other (identical)
components more than it would affect q2 itself. The computed results are consistent
with this expectation. Both formulations transfer less variance from v1 to the other
components than indicated by the DNS. Therefore case M, in which the transfer is
maximal within the ODT framework, is in better agreement with DNS component
variances.

The overall height and width of the ODT q2 profiles agree reasonably well with
their DNS counterparts, although significant differences in profile shape are apparent.
Thus, ODT provides a reasonable overall representation of the total turbulent kinetic
energy in these flows, irrespective of the details of the scrambling mechanism in the
model.

Figures 5–8 compare ODT and DNS budgets of 〈v′21 〉, 〈v′22 〉, 〈v′23 〉, and q2, respectively.
(The definitions and ODT representations of the terms of these budgets are discussed
in the Appendix.) The most significant difference between the results for the two ODT
cases is the better agreement of case M with the DNS budgets of 〈v′22 〉 and 〈v′23 〉. This
is not surprising in view of the better distribution of q2 among velocity components
that is obtained for case M. Likewise, the case-M budgets of 〈v′21 〉 for both flows are
closer to the corresponding DNS budgets than are the case-E budgets.

As expected, the q2 budgets are least sensitive to the choice of formulation. Wake
simulations for α = 1

3
(not shown) yield significantly different budgets of q2 and

of velocity-component variances. Reduction of α must eventually affect turbulence
energetics because fluctuations are suppressed entirely in the limit of vanishing α.
However, there appears to be little sensitivity to α at higher α values. Collectively, the
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Figure 5. Budget of 〈v′21 〉, scaled by ∆U3/δm for the mixing layer and by U3
0/b for the wake: ——,

production (upper), dissipation (lower); −−−, time derivative; · · · · · ·, advective transport; — . —,
scrambling. ODT and DNS results are plotted right and left of centreline, respectively. (a) Mixing
layer, case E. (b) Mixing layer, case M. (c) Wake, case E. (d) Wake, case M.

comparisons between ODT and DNS indicate that the model provides a reasonable
quantitative representation of turbulent free shear flow energetics.

Comparable performance, but more limited in scope, was obtained previously using
a scalar velocity formulation (Kerstein & Dreeben 2000). One noticeable difference
between the present and previous results is the shape of predicted q2 and 〈v′21 〉 profiles
for the wake. The previous study showed less prominent variations of profile slope
than indicated by the DNS, but the present results (figures 4c and 4d) show more
prominent variations. This may be related to the deep minimum of the advective
transport term of the 〈v′21 〉 budget (figures 5c and 5d); the scalar velocity formulation
predicts a shallower minimum than indicated by the DNS. With regard to v1 statistics,
the difference between the two formulations is kernel implementation that represents
pressure scrambling, but also affects transport of velocity fluctuations and thus the
velocity fluctuation profiles (see the Appendix). It is reasonable that the wake would
be more affected than the mixing layer because the mixing layer has a broader
turbulence production zone, so effects specific to the shape of the kernel function
should be smeared to a greater extent in the mixing layer. Figure 1 indicates the
relatively uniform distribution of eddy events within the mixing layer, as would be
expected.

ODT is distinct in character from other statistical models of turbulence in that
it is a fully resolved unsteady simulation and accordingly, can predict additional
statistical properties with no further empirical input. To illustrate this, a passive
scalar has been included in the ODT simulations in order to obtain families of scalar
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PDFs parameterized by normalized lateral location. The ODT results are compared
to DNS results (Rogers & Moser 1994, plus additional unpublished data provided by
the authors). For both flows, Sc = 0.7 for the passive scalar (Mike Rogers, personal
communication; a different value is stated is the cited reference).

For both flows, the initial scalar profile θ(y, 0) is constant on either side of the
mixed zone, with values 0 and 1. As in the initialization of v1, a linear ramp is
introduced between the constant regions to facilitate transient relaxation.

The ODT results for cases E and M do not differ significantly, so only case M
results are shown. Introducing a scalar thickness δs =

∫
θ(1 − θ) dy, ODT values of

the ratios δs/δm (for the mixing layer) and δs/b (for the wake) are found to differ by
up to 20% from DNS values. To compare scalar PDFs on a consistent basis, lateral
location is parameterized by ŷ ≡ y/δs.

ODT and DNS scalar mean and variance profiles, plotted versus ŷ, are shown in
figures 9 and 10. These and all other scalar statistics correspond to the regime of self-
similar scalar evolution for both ODT and DNS. ODT provides a reasonable overall
representation of the DNS profiles, though there are some significant differences.

ODT and DNS scalar PDFs are compared in figure 11. For both flows, the ODT
results are closest to DNS results for relatively well-mixed conditions. This applies to
the centreline (ŷ = 0) PDFs and to most of the other PDFs for θ < 0.7. PDFs are
shown only for ŷ > 0 because they are invariant under the transformation ŷ → −ŷ,
θ → 1 − θ. θ = 1 corresponds to the positive-ŷ free-stream value, so the large-θ
side of positive-ŷ PDFs reflects a relatively strong contribution from newly entrained
free-stream fluid that is not yet very well mixed. The entrainment-sensitive portions
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Figure 9. Passive scalar mean profile, plotted versus lateral location y scaled by the scalar
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Figure 10. Passive scalar variance profile. Format as in figure 9. −−−, ODT case M; ——, DNS.
(a) Mixing layer. (b) Wake.

of the PDFs are not well represented by ODT because the model does not capture
the flow-specific three-dimensional structure of the large entraining eddies.

4. Discussion
The goal of the successive stages of development of ODT (Kerstein 1999a; Wunsch

& Kerstein 2001) is to achieve as complete and precise an emulation of Navier–Stokes
turbulence as possible on a one-dimensional spatial domain. In this study, two related
features of Navier–Stokes turbulence are incorporated: the three-dimensional vector
character of the velocity field, and the consequent intercomponent energy transfer in
response to pressure fluctuations. In addition, a large-eddy regulation mechanism is
introduced that is more robust than mechanisms used previously.

Intercomponent energy transfer is implemented by applying the return-to-isotropy
concept to individual eddies, in contrast to its application to averaged quantities in
second-order closure models. The new method is based on eddy-resolved evaluation
of the transferrable energy in each velocity component based on an available-energy
construct.

The prescription of the redistribution of this energy among the components is
not unique, but coordinate invariance and physical intuition identify two preferred
options. One is based on the assumption that the individual eddy causes loss of
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directional preference, and thus equipartition of the available energy among the three
velocity components (case E). The other maximizes the overall energy transfer rate
from the high-energy to the low-energy velocity components, thus maximizing the
rate of return to isotropy in flows with unequal turbulent-kinetic-energy production
rates for different components (case M).

In applications to free shear flows, it is found that neither method transfers as
much turbulent kinetic energy from the shear-driven velocity component, v1, to the
other components as indicated by DNS results, so case M is more accurate in
this regard because it maximizes the transfer. It would be interesting to investigate
whether Navier–Stokes turbulence likewise maximizes intercomponent transfer subject
to physical constraints.

One implication is that the interpretation of the triplet map as an individual
turbulent eddy may be too literal. Such a literal interpretation would be questionable
regardless of the physical realism of the model because a turbulent eddy in the
most general context (i.e. not referring specifically to large-scale flow structures or
dissipation-scale vortices) is an idealization rather than an identifiable motion in
turbulent flow. Case-E energy transfer is motivated by the interpretation of the
triplet map as a representation of a vortical overturn that erases memory of the prior
orientation of the velocity vector. Case M implies a more subtle interpretation in which
the scaling properties governing the ensemble of eddy events are more fundamental
than the relationship between individual events and individual fluid motions. Indeed,
it has been proposed that the robustness of the scalings that determine the time scales
of individual events in the simulation is the main reason for the breadth of predictive
capability exhibited by ODT (Kerstein 1999a).

A practical feature of the vector formulation of ODT is that it may facilitate the
use of the model as a subgrid momentum closure for large-eddy simulation (LES) of
turbulence. An effort to implement ODT as a near-wall submodel for LES has been
initiated (Kerstein et al. 2001).

The vector formulation also offers the possibility of simulating rotating flow by
taking i = 3 to be the azimuthal coordinate in a cylindrical coordinate system. Equa-
tions (1) and (2) would be modified accordingly, and centrifugal acceleration could
be incorporated much as the gravitational acceleration in buoyant flow applications
(Wunsch & Kerstein 2001). It would be interesting to test the ODT treatment of this
particularly challenging problem.
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Additional opportunities for extensions are provided by the energy transfer mecha-
nism that was introduced here in the context of energy redistribution among velocity
components. This mechanism played a key role in a recent application of ODT to
buoyant stratified flow (Wunsch & Kerstein 2001). It may likewise enable applications
to compressible flow (by coupling flow energetics to the energy equation), multiphase
flow (e.g. a dispersed phase with two-way coupling or immiscible fluids with signif-
icant surface-tension energy), and magnetohydrodynamics. Also, it has been noted
that the present framework may enable a quantitative representation of the transition
to turbulence.

Thus, the formulation introduced here enables systematic extension of ODT to many
challenging turbulent flow regimes. Tests of the validity of ODT in these contexts
would provide further indications of the robustness of the modelling approach.

The authors would like to thank R. D. Moser and M. M. Rogers for providing
numerical results from their publications and from unpublished work. This research
was supported by the Division of Chemical Sciences, Geosciences & Biosciences,
Office of Basic Energy Sciences, US Department of Energy.

Appendix. Statistical properties of flow realizations
ODT is formulated as a closed system on a one-dimensional domain. The model can

be viewed as a simulation of a one-dimensional line of sight in a three-dimensional
flow. However, such a line of sight is not a closed system. Modeling it as a closed
system is an artifact that may be the cause of some of the discrepancies between
model predictions and measured turbulence properties. However, it is unlikely that
this is the most severe approximation within the model.

A key benefit of taking the one-dimensional domain to be a closed system is
that conservation laws can be enforced. The measure-preserving property of the
triplet map enforces conservation of mass. In fact, this property assures that the
triplet map conserves all domain-integrated quantities, including velocity moments
of all orders. The pressure-scrambling mechanism is formulated so as to conserve
momentum and total energy while redistributing energy among velocity components.
Viscous dissipation, implemented in a conventional manner, removes kinetic energy
while conserving momentum.

Accordingly, momentum and energy budgets can be formulated for ODT that
are broadly analogous to the usual relations based on the Navier–Stokes equations.
Here, ODT budgets relevant to the present application are formulated, both to refine
the analogy to Navier–Stokes turbulence and to provide operational definitions of
relevant flow statistics.

For this purpose, a notional instantaneous evolution equation is written for ODT
as follows:

∂vi

∂t
= ν

∂2vi

∂y2
+Mi +Ki. (A 1)

This equation formally represents the three processes that can change the value of vi at
a given location y and time t. The viscous term has its usual form. Mi and Ki represent
changes induced by triplet-map and pressure-scrambling operations, respectively. For
example, if a triplet map at time t0 replaces the vi value at given y, denoted v̂i, by a
new value ṽi, then Mi(y, t) = (ṽi− v̂i)δ(t− t0). The formal definition of Ki is analogous,
with v̂i and ṽi now evaluated before and after the pressure-scrambling operation.
Numerical implementation of statistical data analysis is based on ensemble-averaged
equations derived from (A 1).
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Before averaging (A 1), the role of Ki in the context of momentum and energy bal-
ances is considered. Though kernel addition during eddy implementation is intended
to incorporate pressure-scrambling effects, this operation may be interpreted formally
as a combination of scrambling and transport contributions to balance equations. In
particular, a given kernel-induced change Ki(y, t) may reflect momentum and energy
transfers to other velocity components (scrambling) and/or to the same velocity com-
ponent at other spatial locations (transport). Accordingly, Ki is expressed as a sum,
Ki = Si + Ti, of scrambling and transport contributions.

The kernel K is required to obey
∫
K dy = 0 so that the pressure-scrambling

operation conserves momentum. Accordingly, for a given eddy
∫
Ki dy = 0. The

transport contribution Ti should be defined so that its integral is zero, because it
represents i-component momentum transfer along the y-coordinate and therefore is
not a net momentum source or sink for this component. These integral constraints
are satisfied only if

∫
Si dy = 0.

The latter result does not uniquely define Si, but the choice Si ≡ 0 is clearly
preferred because it corresponds to the absence of a pressure-scrambling contribution
to the ODT mean momentum equation, in accordance with the absence of pressure
scrambling in the Navier–Stokes mean momentum equation. In fact, this equation
lacks any pressure-fluctuation terms, so Ti should not be regarded as a pressure-
transport contribution. Rather, Mi and Ti together determine the ODT analogue of
mean advective transport.

The ODT mean momentum equation is obtained by taking the ensemble average
of (A 1). Substituting Ti for Ki, this gives

∂

∂t
〈vi〉 = ν

∂2

∂y2
〈vi〉+ 〈Mi〉+ 〈Ti〉, (A 2)

which may be compared to the constant-density Navier–Stokes mean momentum
equation for planar time-developing flow (Moser et al. 1998),

∂

∂t
〈v1〉 = ν

∂2

∂y2
〈v1〉 − ∂

∂y
〈v′1v′2〉, (A 3)

where v′i ≡ vi−〈vi〉. (Owing to planar symmetry, 〈v2〉 and 〈v3〉 are identically zero.) The
comparison identifies the ODT analogue of the Reynolds-stress component 〈v′1v′2〉 for
this class of flows. Owing to the finite lateral extent of the turbulent zone, 〈v′1v′2〉 = 0
at y = ∞, so at any location y∗, (A 2) and (A 3) give

〈v′1(y∗)v′2(y∗)〉 =

∫ ∞
y∗

dy(〈M1〉+ 〈T1〉) ≡ I1(y
∗). (A 4)

The notation Ii(y
∗) is introduced in order to distinguish the operational evaluation of

〈v′i(y∗)v′2(y∗)〉 in ODT from the conventional Navier–Stokes definition of this quantity.
(Generalization of the derivation of (A 4) to i 6= 1 is straightforward.)

Equation (A 3) is consistent with the physical interpretation that 〈v′1(y∗)v′2(y∗)〉
represents the rate of increase of

∫ ∞
y∗ dy〈v1(y)〉 due to turbulent transfer of the v1

velocity component across y = y∗. The terms on the right-hand side of (A 4) are the
contributions of the ODT turbulent transfer mechanisms to this integral.

Operationally, these contributions are evaluated by gathering statistics from ODT
realizations in finite time bins. Omitting for now the viscous contribution, (A 2) implies
that the mean velocity increment over a time increment ∆t is

〈∆v1〉 = 〈M1∆t〉+ 〈T1∆t〉, (A 5)
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where M1∆t and T1∆t are determined, for a given realization, by summing the
respective ∆v1 contributions over all eddies occurring during the designated time
interval. This summation is performed separately at each location y, though the y-
argument has been suppressed in the analysis. An average of these contributions over
an ensemble of realizations yields 〈∆v1〉. Dividing by ∆t, a discrete-time estimate of
the advective terms on the right-hand side of (A 2), specialized to i = 1, is obtained.
Substitution into (A 4) then yields the ODT analogue of 〈v′1v′2〉.

As noted in § 3.2, this result is different from what would be obtained by evaluating
〈v′1v′2〉 based on ODT velocity profiles v1 and v2. ODT velocities do not literally advect
fluid, so their use in this way would not be physically meaningful. However, ODT is
formulated so that energetics based on these profiles are meaningful. In particular,
budgets of the component contributions, 1

2
〈v′2i 〉, to the turbulent kinetic energy are

analogous to their Navier–Stokes counterparts. Flux terms within these budgets must
be evaluated, as in the derivation of (A 4), based on the conservation laws obeyed by
ODT.

Therefore the ODT budget of 〈v′2i 〉 is obtained by first reconsidering (A 1). The
usual approach would be to multiply this equation by vi, average, and then combine
the result with 〈vi〉 times (A 2) to obtain an evolution equation for 〈v′2i 〉. However,
this approach is again inapplicable to the advective terms because of the limited role
of the velocity profiles in ODT. Therefore the appropriate starting point is the formal
equation

∂v2
i

∂t
= 2νvi

∂2vi

∂y2
+Mii +Kii, (A 6)

where Mii and Kii represent the effects of the triplet-map and pressure-scrambling
operations, respectively, on v2

i at given y. For the illustrative case below (A 1),
Mii(y, t) = (ṽ2

i − v̂2
i )δ(t− t0), where v̂i and ṽi are evaluated before and after the triplet

map, and the evaluation of Kii is analogous.

Kii, like Ki, is expressed as a sum of scrambling and transport contributions,
Kii = Sii + Tii. For a given eddy, transport by definition conserves v2

i globally, so∫
Tii dy = 0. Unlike Ki, Kii is not globally conserved, so

∫
Kii dy is non-zero in

general. Sii is not uniquely defined, though its dy-integral for a given eddy is unique.
We choose to define Sii within an eddy as its eddy average, Sii = (1/l)

∫
Kii dy. Though

arbitrary, this choice does not have a significant impact on computed results because
it only affects the spatial distribution of scrambling within an eddy subject to the
integral constraint.

It was noted that Ti should not be interpreted as a pressure-transport effect
although it is based on the model subprocess that nominally represents pressure-
fluctuation effects. Likewise, Tii is not specifically a pressure-transport effect, although
the conventional 〈v′2i 〉 budget, unlike the 〈vi〉 budget, has a pressure-transport as well
as a turbulent transport term. The sum of Mii and Tii contributions can be interpreted
as the ODT analogue of the sum of Navier–Stokes pressure-transport and turbulent
transport terms, but the Mii and Tii contributions cannot be decomposed consistently
into the individual Navier–Stokes terms. Therefore the advective transport term of
the plotted 〈v′2i 〉 and q2 budgets combines these two terms.

Averaging (A 6) yields the ODT evolution equation for 〈v2
i 〉,

∂

∂t
〈v2
i 〉 = ν

∂2

∂y2
〈v2
i 〉 − 2ν

〈(
∂vi

∂y

)2
〉

+ 〈Mii〉+ 〈Tii〉+ 〈Sii〉, (A 7)
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where the viscous contribution has been rearranged in the usual manner. To obtain the
evolution equation for 〈v′2i 〉, we subtract (∂/∂t)〈vi〉2 = 2〈vi〉(∂/∂t)〈vi〉 from (A 7). The
subtracted term is evaluated by multiplying (A 2) by 2〈vi〉. Performing the subtraction
and rearranging the viscous terms in the usual manner gives

∂

∂t
〈v′2i 〉 = ν

∂2

∂y2
〈v′2i 〉 − 2ν

〈(
∂v′i
∂y

)2
〉

+ 〈Mii + Tii + Sii〉 − 2〈Mi + Ti〉〈vi〉. (A 8)

Adopting the Ii notation introduced in (A 4) and introducing the notation Iii(y) ≡∫ ∞
y

dy (〈Mii〉 + 〈Tii〉), addition and subtraction of −2Ii(∂/∂y)〈vi〉 on the right-hand

side of (A 8) gives

∂

∂t
〈v′2i 〉 = ν

∂2

∂y2
〈v′2i 〉 − 2ν

〈(
∂v′i
∂y

)2
〉
− 2Ii

∂

∂y
〈vi〉 − ∂

∂y
(Iii − 2〈vi〉Ii) + 〈Sii〉 (A 9)

after some rearrangement. This is not the most useful representation for data reduc-
tion. The terms in (A 9) have been organized so that their counterparts in conventional
Navier–Stokes budgets (as formulated by Moser et al. 1998) can be readily identified.

The first term on the right-hand side of (A 9) is the viscous diffusion term, identical
in form to the corresponding term of the conventional 〈v′2i 〉 budget. The second term
is the ODT analogue of the conventional dissipation term −2ν〈(∂v′i/∂xj)(∂v′i/∂xj)〉,
which is summed over j but not over i. In ODT, property variations are represented
only on the y-coordinate, so the ODT dissipation term corresponds to the j = 2
term of this sum. This does not imply that ODT necessarily underestimates the
viscous dissipation. The conservation laws obeyed by ODT assure that it will exhibit
a balance between total (y-integrated) production and total dissipation plus storage
(time derivative), and the model can in principle reproduce all these quantities
accurately. Because the model is confined to one spatial dimension, velocity derivatives
will be larger in magnitude to achieve a given dissipation level than they are in three-
dimensional flow. This is another illustration that ODT may provide a reasonable
representation of flow energetics although its representation of flow kinematics differs
from three-dimensional turbulence.

As noted earlier, Ii is the ODT analogue of the Reynolds-stress component 〈v′iv′2〉.
Accordingly, the third term on the right-hand side of (A 9) corresponds precisely
to the conventional production term. For i = 2, this implies two non-equivalent
ODT representations of the quantity conventionally denoted 〈v′22 〉: one is the ODT
v2-component variance (left-hand side), and the other is I2.

The next term is a transport term because its form precludes a net gain or
loss of total 〈v′2i 〉. It subsumes the ODT advective processes (triplet map and kernel
implementation), and in this regard is analogous to the sum of conventional turbulent
transport and pressure transport, here denoted ‘advective transport’. There does
not appear to be a physically valid decomposition of the ODT term into the two
conventional transport terms. Therefore the sum of conventional terms is compared
to the ODT advective transport in plotted budgets.

The quantity Sii has been defined so that its properties are analogous to the
conventional pressure–strain term. Though there is some arbitrariness in the definition,
it was noted that an integral constraint limits its quantitative impact. 〈Sii〉 measures
pressure scrambling by the mechanism introduced in § 2.2. The transport induced by
this mechanism is subsumed in the transport term of (A 9). Sii has been defined so that
its sum over components i is zero at all y. Thus, there is no scrambling contribution
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to the ODT budget of q2 (the sum of component variances), just as there is no
pressure–strain term in the conventional q2 budget.
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